Hard Problems

- Some problems are hard to solve.
- No polynomial time algorithm is known
- Most combinatorial optimization problems are hard
- Popular NP-hard problems:
- Traveling Salesman
- N-Queens
- Bin packing
- 0/1 knapsack
- Graph partitioning
- and many more

Traveling Salesperson Problem (TSP)

- Let G be a weighted directed graph.
- A tour in G is a cycle that includes every vertex of the graph.
- TSP => Find a tour of shortest length.
- Problem is NP-hard.

Applications Of TSP

- Home city
- Visit city

Applications Of TSP

- Each vertex represents a city that is in Joe's sales district.
- The weight on edge (u, v) is the time it takes Joe to travel from city u to city v.
- Once a month, Joe leaves his home city, visits all cities in his district, and returns home.
- The total time he spends on this tour of his district is the travel time plus the time spent at the cities.
- To minimize total time, Joe must use a shortestlength tour.

Applications Of TSP

- Tennis practice.
- Start with a basket of approximately 200 tennis balls.
- When balls are depleted, we have 200 balls lying on and around the court.
- The balls are to be picked up by a robot (more realistically, the tennis player).
- The robot starts from its station visits each ball exactly once (i.e., picks up each ball) and returns to its station.

Applications Of TSP

Applications Of TSP

- 201 vertex TSP.
- 200 tennis balls and robot station are the vertices.
- Complete directed graph.
- Length of an edge (u, v) is the distance between the two objects represented by vertices u and v.
- Shortest-length tour minimizes ball pick up time.
- Actually, we may want to minimize the sum of the time needed to compute a tour and the time spent picking up balls using the computed tour.

Applications Of TSP 준

- Manufacturing.
- A robot arm is used to drill n holes in a metal sheet.

$\mathrm{n}+1$ vertex TSP.

n-Queens Problem

A queen that is placed on an $n \times n$ chessboard, may attack any piece placed in the same column, row, or diagonal.

8x8 Chessboard

8 Queens Problem

Place 8 queens on a 8×8 chessboard in such a way that the queens cannot check each other.

4-Queens Problem

Can 4 queens be placed on an 4×4 chessboard so that no queen may attack another queen?

4x4

One possible solution for 8-Queens Problem

8 Queens - Representation

Genotype: a permutation of the numbers 1 through 8

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 3 & 5 & 2 & 6 & 4 & 7 \\
\hline
\end{array}
$$

Phenotype: a configuration

Difficult Problems

- Many require you to find either a subset or permutation that satisfies some constraints and (possibly also) optimizes some objective function.
- May be solved by organizing the solution space into a tree and systematically searching this tree for the answer.

Permutation Problems

- Solution requires you to find a permutation of n elements.
- The permutation must satisfy some constraints and possibly optimize some objective function.
- Examples.
- TSP.
- n-queens.
- Each queen must be placed in a different row and different column.
- Let queen i be the queen that is going to be placed in row i.
- Let c_{i} be the column in which queen i is placed.
- $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \ldots, \mathrm{c}_{\mathrm{n}}$ is a permutation of $[1,2,3, \ldots, \mathrm{n}]$ such that no two queens attack.

Solution Space

- Permutation problem.

$$
\begin{aligned}
& n=2,\{12,21\} \\
& n=3,\{123,132,213,231,312,321\}
\end{aligned}
$$

- Solution space for a permutation problem has n ! members.
- Nonsystematic search of the space for the answer takes O (pn!) time, where p is the time needed to evaluate a member of the solution space.

8 Queens - Operators

Mutation: exchanging two numbers

Crossover: combining two parents

8 Queens Fitness \& Selection

Fitness: penalty of one queen is equal to the number of queens she can check.
The fitness of the configuration is equals the sum of the penalties of all queens.

Selection: using a roulette wheel
fitness $\left(\mathrm{C}_{1}\right)=1$
fitness $\left(\mathrm{C}_{2}\right)=2$
fitness $\left(\mathrm{C}_{3}\right)=3$

Assignment

Q.1)Write a short note on Simplified NP hard problem.
Q.2)Write a note on NP hard graph problem. Q.3)Writ a note on NP Hard scheduling problem

