

Hard Problems

- Some problems are hard to solve.
 - No polynomial time algorithm is known
 - Most combinatorial optimization problems are hard
 - Popular NP-hard problems:
 - Traveling Salesman
 - N-Queens
 - Bin packing
 - 0/1 knapsack
 - Graph partitioning
 - and many more

Traveling Salesperson Problem (TSP)

- Let G be a weighted directed graph.
- A tour in G is a cycle that includes every vertex of the graph.
- TSP => Find a tour of shortest length.
- Problem is NP-hard.

• Visit city

Applications Of TSP

- Each vertex represents a city that is in Joe's sales district.
- The weight on edge (u,v) is the time it takes Joe to travel from city u to city v.
- Once a month, Joe leaves his home city, visits all cities in his district, and returns home.
- The total time he spends on this tour of his district is the travel time plus the time spent at the cities.
- To minimize total time, Joe must use a shortestlength tour.

Applications Of TSP

- Tennis practice.
- Start with a basket of approximately 200 tennis balls.
- When balls are depleted, we have 200 balls lying on and around the court.
- The balls are to be picked up by a robot (more realistically, the tennis player).
- The robot starts from its station visits each ball exactly once (i.e., picks up each ball) and returns to its station.

Applications Of TSP

- 201 vertex TSP.
- 200 tennis balls and robot station are the vertices.
- Complete directed graph.
- Length of an edge (u,v) is the distance between the two objects represented by vertices u and v.
- Shortest-length tour minimizes ball pick up time.
- Actually, we may want to minimize the sum of the time needed to compute a tour and the time spent picking up balls using the computed tour.

Applications Of TSP 🤧

- Manufacturing.
- A robot arm is used to drill n holes in a metal sheet.

Robot Station

						Ο	
-		Ο	0	0	0	0	
	0		0			Ŭ	
		0		0	0	0	0
		0	0)	0	0	J

n+1 vertex TSP.

8x8 Chessboard

8 Queens Problem

Place 8 queens on a 8x8 chessboard in such a way that the queens cannot check each other.

Can 4 queens be placed on an 4 x 4 chessboard so that no queen may attack another queen?

4x4

One possible solution for 8-Queens Problem

8x8

8 Queens - Representation

Genotype: a permutation of the numbers 1 through 8

1 3 5 2 6 4 7 8

Phenotype: a configuration

Difficult Problems

- Many require you to find either a subset or permutation that satisfies some constraints and (possibly also) optimizes some objective function.
- May be solved by organizing the solution space into a tree and systematically searching this tree for the answer.

Permutation Problems

- Solution requires you to find a permutation of n elements.
- The permutation must satisfy some constraints and possibly optimize some objective function.
- Examples.
 - TSP.
 - n-queens.
 - Each queen must be placed in a different row and different column.
 - Let queen i be the queen that is going to be placed in row i.
 - Let c_i be the column in which queen i is placed.
 - c₁, c₂, c₃, ..., c_n is a permutation of [1,2,3, ..., n] such that no two queens attack.

Solution Space

Permutation problem.

n = 2, {12, 21} n = 3, {123, 132, 213, 231, 312, 321}

- Solution space for a permutation problem has n! members.
- Nonsystematic search of the space for the answer takes O(pn!) time, where p is the time needed to evaluate a member of the solution space.

8 Queens - Operators

Mutation: exchanging two numbers

Crossover: combining two parents

8 Queens -Fitness & Selection

Fitness: penalty of one queen is equal to the number of queens she can check.

The fitness of the configuration is equals the sum of the penalties of all queens.

Selection: using a roulette wheel

Assignment

Q.1)Write a short note on Simplified NP hard problem.Q.2)Write a note on NP hard graph problem.Q.3)Writ a note on NP Hard scheduling problem

